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Three alkylenedithio derivatives of 1,3-bis(1,3-dithiol-2-
ylidene)-1,3-dihydrobenzo[c]thiophene (BDTBT) have been
synthesized. These donors exhibited an electron-donating ability
near to that of tetrathiafulvalene and afforded a very stable radical
cation. The powdered tetracyanoquinodimethane complex of the
methylenedithio derivative exhibited a fairly high room
temperature conductivity of 0=15 Scm—! and a semiconducting
behavior with a very low activation energy of Ea=0.050 eV.

One particular aspect in the synthesis of promising donors for
organic metals and organic superconductors is to extend the -
system of donors by replacing the intercyclic C=C bond of tetra-
thiafulvalene (TTF) with an appropriate -linking group,! since
such an extension is very important for attaining high conduc-
tivity by reducing the on-site Coulomb repulsion in the dicationic
state.2 More recently, such conjugation-elongated donors have
been realized to be quite adequate to the conducting components
for high-T¢ organic superconductors due to an increase in the
thickness of the effective conducting layer3 However, those
donors extended with an open-chain polyene, phenylene, or
naphthalene bridge are generally unstable in the neutral statel¢4
and tend to give unstable radical cations.1P- It was clarified for
the first time by our group that incorporation of a sulfur atom into
the linking m-bridge stabilizes significantly the radical cation
state,® and we have recently synthesized 2,5-bis(1,3-dithiol-2-
ylidene)-2,5-dihydrothiophene (BDTT) 1 and its dichalcogeno
derivatives 2 and 3,7 in which the latter two have outer chalcogen
atoms to increase the dimensionality of the Fermi surface.

s — s_R 1:BDTT:R=H
[ >=[—)=( I 2 : EDT-BDTT : R-R = SCH,CH,S

S S S°SR 3:BMT-BDTT:R=SMe
Although 1, 2, and 3 are stable in the solid state and gave a stable
radical cation, they are powerful donors and in consequence a
little air-sensitive in solution. Therefore new BDTT type of
extended donors having a somewhat weaker electron donating
ability are more favorable for the component of organic
conductors. The electron donating abilities of BDTTs might be
weakened by condensation of a benzene ring on the 2,5-
thienoquinonoid ring, because the linking group takes an unstable
benzo|[c]thiophene structure, namely ortho-quinodimethane struc-
ture at the radical cationic stage, as well as the dicationic stage
(Scheme 1). From this point of view, we herein report the suc-
cessful synthesis and electrochemical properties of dichalcogeno

derivatives 4, 5, and 6 of 1,3-bis(1,3-dithiol-2-ylidene)-1,3-
dihydrobenzo[c]thiophene (BDTBT) , new entries of the BDTT-
type of conjugation-extended donors, and electrical properties of
their charge transfer (CT) complexes. The donors 4 and § are of
especially current interest, because their mother compounds,
methylene- and ethylenedithiotetrathiafulvalenes (MDT-TTF and
EDT-TTF)®? have produced organic superconductors.

Scheme 1.
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The synthetic routes to MDT-BDTBT 4, EDT-BDTBT 5, and
PDT-BDTBT 6 are outlined in Scheme 2. The cross-coupling
reaction of thiophthalic anhydride with an equimolecular amount
of 4,5-bis(methoxycarbonyl)-1,3-dithiol-2-thione in the presence
of excess of trimethyl phosphite in refluxing benzene gave mono-
capped intermediate 7 in 75% yield. Treatment of 7 with 4,5-
alkylenedithio-1,3-dithiol-2-thiones 8a, 8b, and 8¢ in refluxing
toluene containing excess trimethyl phosphite afforded bis-capped
products 9a (10%), 9b (29%), and 9¢ (15%), respectively,
which were demethoxycarbonylated by heating with lithium
bromide monohydrate in hexamethylphosphoric triamide
(HMPA) to give 4, 5, and 6, respectively in nearly quantitative
yields.10 The synthetic method reported here provides a mild and
short step procedure, that can complement the previous method’
involving the dehydrogenation of the intermediate with DDQ.

BDTBTs 4, 5, and 6 are stable not only in the solid state but
also in solution in common organic solvents and showed two
well-defined reversible one-electron oxidation waves in the cyclic
voltammograms. The electrochemical parameters obtained by the
cyclic voltammetry are summarized in Table 1 along with those of
TTF and 2 measured under the same conditions. The first
oxidation potentials (E19X) of 4, 5, and 6 are much the same as
that of TTF and higher by 0.18—0.19 V than that of 2, demon-
strating that the electron donating ability is weakened as we ex-
pected by condensation of a benzene ring on the central thieno-
quinonoid ring. The second oxidation potentials (E29X) of 4, 5,
and 6 are also higher by 0.17—0.20 V than that of 2. This is
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Table 1. Electrochemical dataof4, 5, 6, 2, and TTF, and electrical conductivities of their TCNQ complexes

Donor Electrochemical propertyd Conductivity? and IR band® of the TCNQ complex
E10X Ep0X AEOX  logKgem D:A ORT /ScmL VN /enrt ver /enrt
4 +0.36 +0.55 0.19 3.22 1:1 15 2177 3000 (br)
5 +0.37 +0.58 -+ 0.21 3.56 1:1 4.8 2177 3100 (br)
6 +0.37 +0.58 0.21 3.56 2:1 4.2 x 102 2177, 2148 3000 (br)
2 +0.18 +0.38 0.20 3.39 3:2 33 2177 3000 (br)
TTF +0.37 4+0.75 0.38 6.44 —_— — —_— —

a Potentials are given in V vs. SCE and were determined by cyclic voltammetry / 1.0 mM solutions in PhCN with 0.1 M TBAP : 50 mV / sec.
b Four-probe method on a compaction pellet. ¢ vCN of TCNQ: 2220 cm—L.

reasonable by considering that the central ®-linking group of
BDTBTSs can acquire an extra destabilization energy by taking an
unstable benzo[c]thiophene structure both in the radical cation
state and in the dication state as shown in Scheme 1. In conse-
quence, the AEOX (=E20X — E10X) values and the semiquinone
formation constants (log Ksem values) of 4, 5, and 6 do not
significantly change from the corresponding values of 2.

MDT-BDTBT 4 and EDT-BDTBT 5§ formed 1:1 CT com-
plexes with tetracyanoquinodimethane (TCNQ), whereas PDT-
BDTBT 6 formed a 2:1 TCNQ complex, rich in donor com-
ponent. The oxidation potentials of these three donors are never-
theless almost identical with each other. As shown in Table 1,
the room temperature conductivities of the TCNQ complexes of 4
(15 Sem™1) and 5 (4.8 Scm1) measured on a compressed pellet
are 103 and 102 times higher, respectively, than that of 6.
Probably, a uniform intermolecular face-to-face arrangement of
the donor molecules in the stacks would be difficult to attain in
the TCNQ salt of 6 since the propylene moiety may take a
nonplanar chair-like conformation.!l ~ As far as we know, the
conductivity of the TCNQ complex of 4 is highest among the
conductivities reported so far for the powdered CT complexes of
conjugation-extended TTF type domnors, although similar high
conductivities have been reported for the single crystalline TCNQ
complexes of ethanediylidene-extended TTF'2 and anthraqui-
nonoid-extended tetramethyl-TTF1? The temperature depend-
ence of the conductivity for the powdered TCNQ complex of 4
shows a semiconducting behavior with a very low activation
energy of 0.050 eV, suggesting that it might exhibit a metallic
conducting behavior in a single crystalline state.

All the complexes of 4, 5, and 6 showed a broad absorption
band in the IR region at around 3000 cmr! characteristic of an
intrastack CT transition!* in a segregated stack with a mixed
valence state. The degree of CT estimated primarily from vCN
values (Table 1) using Chappell's equation is fully ionic with
Z=0.97. However, we can believe that the present TCNQ
complexes 0f 4, 5, and 6 exist in a partial CT condition on taking
account of their high conductivities. Preparations of single
crystals of the CT complexes and radical salts with inorganic
anions are in progress.
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